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Abstract

In this paper we further explore and apply our recent anti-diffusive flux corrected high or-

der finite difference WENO schemes for conservation laws [18] to compute the Saint-Venant

system of shallow water equations with pollutant propagation, which is described by a trans-

port equation. The motivation is that the high order anti-diffusive WENO scheme for con-

servation laws produces sharp resolution of contact discontinuities while keeping high order

accuracy for the approximation in the smooth region of the solution. The application of the

anti-diffusive high order WENO scheme to the Saint-Venant system of shallow water equa-

tions with transport of pollutant achieves high resolution of the location and concentration

of the pollutant.

Key Words: anti-diffusive flux correction, sharpening contact discontinuity, high order

accuracy, finite difference WENO scheme, Saint-Venant system of shallow water, transport

of pollutant.

1Department of Mathematics, Pennsylvania State University, University Park, PA 16802. E-mail:
xu z@math.psu.edu

2Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912. E-mail:
shu@dam.brown.edu. Research supported by ARO grant W911NF-04-1-0291 and NSF grant DMS-0510345.

1



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2006 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2006 to 00-00-2006  

4. TITLE AND SUBTITLE 
Anti-diffusive finite difference WENO methods for shallow water with
transport of pollutant 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Brown University,Division of Applied Mathematics,182 George 
Street,Providence,RI,02912 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
The original document contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

17 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



1 Introduction

In this paper, we are interested in computing the transport of a passive pollutant in the flow

modeled by the Saint-Venant system, given in the one dimensional case by{
ht + (hu)x = S

(hu)t + (hu2 + gh2

2
)x = −ghBx

(1.1)

which is introduced in [16] and regularly used as a simplified model to describe shallow

water flows. Here h is the depth, u is the velocity of water, g is the gravity constant, S is the

pollutant source term, and B(x) is the bottom topography. We are interested in locating the

exact position and the correct concentration of the pollutant which is decided by a transport

equation

(hT )t + (uhT )x = TsS (1.2)

where T is the pollutant concentration, and Ts is the concentration of the pollutant at the

source. This model is used for the computation in [3] with a finite-volume particle (FVP)

method. The FVP method is a hybrid method as a combination of two methods. For

the shallow water equation (1.1), the finite volume method is used, and for the transport

equation (1.2), the particle method is deployed. In [3], the authors also applied filters on the

FVP method to smooth out the oscillations introduced by a combination of two different

mechanisms.

The equation (1.2), which describes the transport of pollutant, is a linear equation for

the variable hT for a given velocity u, thus the solution involving the pollutant will contain

a contact discontinuity when initially hT is discontinuous. To locate the exact location

and concentration of the pollutant, we need to resolve well the contact discontinuity in the

solution, which is a difficult task as contact discontinuities, unlike shocks, are easily smeared

by a shock capturing numerical method. There have been a lot of efforts in the literature to

overcome the problem of the smearing of contact discontinuities. We refer, e.g., to [5, 6, 19]

and the references therein.

Recently, Després and Lagoutière [4] proposed a new approach called limited downwind
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scheme, much akin to a class of flux limiters by Sweby [17], to prevent the smearing of

contact discontinuities while keeping nonlinear stability. Their scheme is identical with the

Superbee scheme developed by Roe [11] in the case of linear advection. By introducing an

anti-diffusive flux, it gives remarkably sharp profiles of contact discontinuities in both one

dimensional scalar and system cases. More importantly, they observe numerically and prove

theoretically that their scheme adopts a class of moving traveling wave solutions exactly.

This has an important implication that the smearing of contact discontinuities will not be

progressively more severe for longer time, but will be stabilized for all time. A later paper

by Bouchut [1] further modifies this scheme to satisfy entropy conditions and also gives a

simple explicit formula for this limited downwind anti-diffusive flux.

In [18], we generalized the downwind flux correction idea to two dimensions and we

developed a class of anti-diffusive high order finite difference WENO schemes to resolve

contact discontinuities for conservation law equations. By going to high order accuracy, we

were able to remove the unpleasant stairs in smooth regions when a first order anti-diffusive

scheme is used. Ample numerical results in [18] indicate that our scheme can resolve well

the contact discontinuities and at the same time maintains the stability and accuracy of

regular high order WENO schemes for shocks and smooth structures of the solution. In

this paper, we would like to further explore and apply the high order anti-diffusive finite

difference WENO schemes in [18] to solve the equations (1.1) and (1.2) as a system, with

the objective of obtaining sharp resolution of the contact discontinuities of the pollutant

propagation.

High order finite difference WENO schemes in [9] were developed based on the successful

ENO schemes [7, 14, 15] and third order finite volume WENO schemes [10], and have been

quite successful in computational fluid dynamics and other applications. They are especially

suitable for problems containing both shocks and complicated smooth flow features. For

more details, we refer to the lecture notes [12] and the survey paper [13], and the references

therein.
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This paper is organized as follows. In Section 2 we briefly review the anti-diffusive high

order finite difference WENO schemes in [18] with improved non-smoothness indicators. In

Section 3 we apply this anti-diffusive finite difference scheme on the system (1.1) and (1.2)

and give numerical results. In Section 4 we apply the anti-diffusive finite difference scheme

on two dimensional models and show the success of the application through typical numerical

tests. Concluding remarks are given in Section 5.

2 Flux corrections for high order finite difference WENO

schemes for conservation laws

In this section, we briefly review the techniques developed and applied in [18] for the con-

servation law equation

ut + f(u)x = 0 (2.1)

with the assumption f ′(u) > 0, for simplicity. The scheme for the other case f ′(u) < 0 can

be designed symmetrically.

2.1 Flux correction for finite difference WENO schemes

We will present the high order flux correction technique in [18] by third order TVD Runge-

Kutta in time and fifth order finite difference WENO reconstruction in space. The full

discretization has the following form

u(1) = un + ∆tL(un)

u(2) = un +
1

4
∆tL′(un) +

1

4
∆tL(u(1)) (2.2)

un+1 = un +
1

6
∆tL′′(un) +

1

6
∆tL(u(1)) +

2

3
∆tL(u(2))

where, on a uniform grid xi = i∆x (for simplicity of presentation), ui denotes the point value

at xi and the operator L is defined by

L(u)i = −λi

(
f̂a

i+ 1
2
− f̂a

i− 1
2

)
(2.3)
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with λi = ∆t
∆xi

(for the uniform mesh case under consideration ∆xi = ∆x) and the anti-

diffusive flux f̂a given by

f̂a
i+ 1

2
= f−

i+ 1
2

+ ϕi minmod

(
ui − ui−1

λi
+ f−

i− 1
2

− f−
i+ 1

2

, f+
i+ 1

2

− f−
i+ 1

2

)

where f−
i+ 1

2

and f+
i+ 1

2

are the fifth order WENO fluxes based on left-biased upwinding and

right-biased upwinding, respectively, see [9] for details. The purpose for the introduction of

the operators L′ and L′′ in (2.2) in [18] is to maintain the moving traveling wave solutions

for piecewise constant functions. The operator L′ is defined by

L
′
(u)i = −λi

(
f̄a

i+ 1
2
− f̄a

i− 1
2

)
(2.4)

with the modified anti-diffusive flux f̄a given by

f̄a
i+ 1

2
=

{
f−

i+ 1
2

+ ϕi minmod
(

4(ui−ui−1)
λi

+ f−
i− 1

2

− f−
i+ 1

2

, f+
i+ 1

2

− f−
i+ 1

2

)
f̂a

corresponding to cases {
b c > 0, |b| < |c|
otherwise

respectively. The operator L′′ is defined by

L′′(u)i = −λi

(
f̃a

i+ 1
2
− f̃a

i− 1
2

)
(2.5)

with the modified anti-diffusive flux f̃a given by

f̃a
i+ 1

2
=

{
f−

i+ 1
2

+ ϕi minmod
(

6(ui−ui−1)
λi

+ f−
i− 1

2

− f−
i+ 1

2

, f+
i+ 1

2

− f−
i+ 1

2

)
f̂a

corresponding to cases {
b c > 0, |b| < |c|
otherwise

respectively. Here b, c are defined as b = ui−ui−1

λi
+ f−

i− 1
2

− f−
i+ 1

2

, c = f+
i+ 1

2

− f−
i+ 1

2

and ϕi is a

discontinuity indicator between 0 and 1. Ideally, ϕi should be close to 0 in smooth regions

and close to 1 near a discontinuity. We refer to [18] for our original choice of ϕi and we

describe a somewhat improved choice in Section 2.2. We remark that the scheme (2.2),
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with L, L′ and L′′ defined by (2.3), (2.4) and (2.5) respectively, is fifth order accurate in

space and third order accurate in time. The correction to the original WENO is no larger

in magnitude than that of f+
i+ 1

2

− f−
i+ 1

2

, which is on the level of truncation errors for the

WENO schemes because both f+
i+ 1

2

and f−
i+ 1

2

are high order approximations to the same

flux at the same location. This ensures that the high order accuracy of the finite difference

WENO schemes is maintained. The purpose of the extra factor 4 in the first argument of the

minmod function in the definition of f̄a and the extra factor 6 in the first argument of the

minmod function in the definition of f̃a is to compensate for the coefficients 1
4

and 1
6

in front

of L′ and L′′ respectively, so that the final scheme could still maintain exactly traveling wave

solutions of a piecewise constant function. We refer to [18] for more details and numerical

experiments for this anti-diffusive flux-corrected WENO scheme, and to [9] for the details of

the fifth order finite difference WENO reconstruction. For the WENO-Roe scheme in [9], the

numerical flux is chosen as f−
i+ 1

2

when f ′(u) > 0 and as f+
i+ 1

2

when f ′(u) ≤ 0. Therefore, the

anti-diffusive flux-corrected WENO scheme is a flux correction to the WENO-Roe scheme.

Because WENO-Roe scheme may violate entropy conditions without an entropy correction,

we only apply the anti-diffusive flux-correction on linear problems or for linearly degenerate

fields in systems.

2.2 The discontinuity indicator

The discontinuity indicator ϕi was designed in [18] such that it is close to 0 in smooth regions

and close to 1 near a discontinuity. Out of consideration for symmetry and somewhat better

numerical performance, we improve the definition of ϕi to the following form:

ϕi =
βi

βi + γi
(2.6)

where

αi = |ui−1−ui|2+ε, ξi = |ui−1−ui+1|2+ε, βi =
ξi

αi−1

+
ξi

αi+2

, γi =
|umax − umin|2

αi

.

(2.7)
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Here ε is a small positive number taken as 10−6 in our numerical experiments, and umax and

umin are the maximum and minimum values of uj for all cells. Clearly, 0 ≤ ϕi ≤ 1, and

ϕi = O(∆x2) in smooth regions. Near a strong discontinuity, γi � βi, ϕi is close to 1.

2.3 Flux corrections for the finite difference WENO schemes in

two dimensions

Two dimensional finite difference WENO schemes are similar to the schemes for one dimen-

sion, with reconstruction computed in each direction. Thus, after reconstruction of f−
i+ 1

2
,j
,

f+
i+ 1

2
,j
, f−

i,j+ 1
2

, f+
i,j+ 1

2

at interfaces between cells from given point values fi,j , for the equation

ut + f(u)x + g(u)y = 0, f ′ > 0, g′ > 0, (2.8)

we present the anti-diffusive flux by

f̂a
i+ 1

2
,j

= f−
i+ 1

2
,j

+ ϕi,j minmod

(
ui,j − ui−1,j

d λx
i,j

+ f−
i− 1

2
,j
− f−

i+ 1
2
,j
, f+

i+ 1
2
,j
− f−

i+ 1
2
,j

)

where d = 2 is the dimension. For fixed j, ϕi,j has the same definition as in Section 2.2 in

one dimension. Symmetrically, in the y direction, we have

ĝa
i,j+ 1

2
= g−

i,j+ 1
2

+ ψi,j minmod

(
ui,j − ui,j−1

d λy
i,j

+ g−
i,j− 1

2

− g−
i,j+ 1

2

, g+
i,j+ 1

2

− g−
i,j+ 1

2

)

with the discontinuity indicator ψi,j defined similarly to the one dimensional case in Section

2.2 in the y direction with fixed xi.

We use the third order TVD Runge-Kutta method for the time discretization. Two

dimensional systems are treated dimension by dimension, with anti-diffusive flux in each

dimension defined as above.
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3 Computation of Saint-Venant equations with trans-

port of pollutant in one dimension

In this section, we apply the algorithm described in the last section to the combined system⎧⎪⎨
⎪⎩

ht + (hu)x = S,

(hu)t + (hu2 + gh2

2
)x = −ghBx

(hT )t + (uhT )x = TsS.

(3.1)

3.1 Characteristic Decomposition

A brief computation of (3.1) gives the following Jacobian

J =

⎛
⎝ 0 1 0

gh − u2 2u 0
−uT T u

⎞
⎠ .

The three eigenvalues of this Jacobian are λ(1) = u − √
gh, λ(2) = u +

√
gh and λ(3) = u.

The matrices composed of the three corresponding right and left eigenvectors are

R =

⎛
⎝ 1 1 0

u −√
gh u +

√
gh 0

T T 1

⎞
⎠

and

L =

⎛
⎝ (u +

√
gh) 0.5√

gh
− 0.5√

gh
0

(
√

gh − u) 0.5√
gh

0.5√
gh

0

−T 0 1

⎞
⎠

respectively. We can easily check that ∂λ(3)

∂u
· R(3) = 0. Here u = (h, hu, hT ) and R(3) is

the right eigenvector corresponding to λ(3). Thus the third characteristic field is a linearly

degenerate filed. We refer to [12] for the details of the procedure for the characteristic

decomposition with the fifth order finite difference WENO reconstruction. In the first and

second genuinely nonlinear fields, we use the Lax-Friedrichs flux splitting, and in the third

field, which is a linearly degenerate field, we apply the anti-diffusive flux.

3.2 Numerical tests

In this subsection, we perform numerical experiment on two examples which are used in [3].
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Figure 3.1: Example 3.2.1. 200 uniform mesh points. t = 4, CFL = 0.3. Solid lines:
reference solution computed by the regular fifth order WENO scheme with 2000 mesh points;
filled rectangles: numerical solution. Left: regular fifth order WENO; Right: anti-diffusive
fifth order WENO.

Example 3.2.1. Advection of pollutant. The setup is as follows: h(x, 0) + B(x) = 1.0,

h(x, 0)u(x, 0) = −0.1, g = 1, S = 0, and the bottom topography is described by

B(x) =

{
0.25(cos(10π(x − 0.5)) + 1), 0.4 ≤ x ≤ 0.6

0, otherwise
(3.2)

The initial pollutant concentration is

T (x, 0) =

{
1, 0.4 ≤ x ≤ 0.5

0, otherwise
(3.3)

The computational domain is [0, 1] and this problem is run to t = 4. The numerical result

in Figure 3.1 shows excellent resolution of the location and concentration of the pollutant

by our anti-diffusive scheme.

Example 3.2.2. Dam Break. The initial condition is

(h, u, T ) =

{
(1.0, 0, 0.7), x < 0

(0.5, 0, 0.5), otherwise
(3.4)

with the gravitational constant g = 9.8, S = 0. The computational domain is [−1, 1] and

the scheme is run to t = 0.24. Again we observe sharp resolution of the location and

concentration of the pollutant in Figure 3.2. Numerical results can be compared to those in

[3] (module a scale by a factor of 1000).
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Figure 3.2: Example 3.2.2. 200 uniform mesh. t = 0.24, CFL = 0.3. Solid lines: reference
solution computed by the regular fifth order WENO scheme with 2000 mesh points; filled
rectangles: numerical solution. Left: regular fifth order WENO; Right: anti-diffusive fifth
order WENO.

4 Computation of the Saint-Venant equations with trans-

port of pollutant in two dimensions

In this section, we apply the algorithm to the two dimensional system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ht + (hu)x + (hv)y = S,

(hu)t + (hu2 + gh2

2
)x + (huv)y = −ghBx

(hv)t + (huv)x + (hv2 + gh2

2
)y = −ghBy

(hT )t + (uhT )x + (vhT )y = TsS.

(4.1)

4.1 Characteristic Decomposition

A brief computation of (4.1) gives the following Jacobians

Jx =

⎛
⎜⎜⎝

0 1 0 0
gh − u2 2u 0 0
−uv v u 0
−uT T 0 u

⎞
⎟⎟⎠

and

Jy =

⎛
⎜⎜⎝

0 0 1 0
−uv v u 0

gh − v2 0 2v 0
−vT 0 T v

⎞
⎟⎟⎠
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in the x and y directions respectively.

The four eigenvalues of the Jacobian Jx are

λ(1) = u −
√

gh, λ(2) = u +
√

gh, λ(3) = u, λ(4) = u.

The matrices composed of the four corresponding right and left eigenvectors are

Rx =

⎛
⎜⎜⎝

1 1 0 0
u −√

gh u +
√

gh 0 0
v v 1 0
T T 0 1

⎞
⎟⎟⎠

and

Lx =

⎛
⎜⎜⎝

(u +
√

gh) 0.5√
gh

− 0.5√
gh

0 0

(
√

gh − u) 0.5√
gh

0.5√
gh

0 0

−v 0 1 0
−T 0 0 1

⎞
⎟⎟⎠

We can check easily that ∂λ(i)

∂u
·R(i) = 0 for i = 3, 4. Here u = (h, hu, hv, hT ) and R(i) is the

right eigenvector corresponding to λ(i). Thus the third and the fourth characteristic fields

are linearly degenerate fields and we will use the anti-diffusive fluxes on these fields.

Similar computation in the y direction gives the following eigenvalues for the Jacobian

Jy

λ(1) = v −
√

gh, λ(2) = v +
√

gh, λ(3) = v, λ(4) = v.

The matrices composed of the four corresponding right and left eigenvectors are

Ry =

⎛
⎜⎜⎝

1 1 0 0
u u 1 0

v −√
gh v +

√
gh 0 0

T T 0 1

⎞
⎟⎟⎠

and

Ly =

⎛
⎜⎜⎝

(v +
√

gh) 0.5√
gh

0 − 0.5√
gh

0

(
√

gh − v) 0.5√
gh

0 0.5√
gh

0

−u 1 0 0
−T 0 0 1

⎞
⎟⎟⎠

Once again we can check that ∂λ(i)

∂u
· R(i) = 0 for i = 3, 4. Thus the third and the fourth

characteristic fields are linearly degenerate fields and we will use the anti-diffusive fluxes on

these fields.
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4.2 Numerical tests

In this subsection, we perform numerical experiments using the anti-diffusive high order

WENO schemes on the shallow water models involving the transport of pollutant in two

dimensions.

Example 4.2.1. Partial dam break. This test case concerns a partial failure of a dam in

a 200 × 200 m2 basin. This problem has been computed by many authors (e.g. [2] and the

references therein). We scale this problem by 100 and the setup is as follows: h(x, y, 0) = 1.0,

b(x, y) = 0, u(x, y, 0) = v(x, y, 0) = 0, T (x, y, 0) = 0.7 when x < 1.0; h(x, y, 0) = 0.3,

b(x, y) = 0, u(x, y, 0) = v(x, y, 0) = 0, T (x, y, 0) = 0.2 when x ≥ 1.0; g = 9.8, S = 0. The

computational domain is [0, 2] × [0, 2] and the break is located at x = 1.0, between y = 0.7

and y = 1.3. We run the computation on this problem to t = 0.2 with CFL = 0.3. The

numerical results in Figures 4.1 and 4.2 indicate excellent resolution of the location and

concentration of the pollutant by our anti-diffusive scheme.

Example 4.2.2. River with obstacles. This is another test computed in [2], which is

originally a test case in the code TELEMAC developed at EDF [8]. It is a river with obstacles

in it. A simplified and scaled version of this problem we are computing here has the following

setup: the computation domain is (x, y) ∈ [0, 3] × [0, 1] with a bottom topography

b(x, y) =

⎧⎪⎨
⎪⎩

0.4, 0.75 < x < 0.95, 0 ≤ y ≤ 0.6

0.4, 1.65 < x < 1.85, 0.6 < y < 0.8

−0.2 cos(π(y − 0.5)), otherwise

(4.2)

which is depicted in Figure 4.3; the gravitational constant g = 1.0, S = 0, u(x, y, 0) = 0.5,

v(x, y, 0) = 0; the initial pollutant is given as

T (x, y, 0) =

{
0.5, 0.35 < x < 0.55, 0.6 ≤ y ≤ 0.8

0, otherwise
(4.3)

and the scheme is run to t = 2.0. Again we observe sharp resolution of the location and

concentration of the pollutant by our anti-diffusive scheme in Figure 4.4. Comparing with the

reference solution at the bottom of Figure 4.4, which is computed with the regular WENO

12



Figure 4.1: Example 4.2.1. 120× 120 uniform mesh. From top to bottom: surfaces of h, hT
and T . Left: regular fifth order WENO; Right: anti-diffusive fifth order WENO.

13



Figure 4.2: Example 4.2.1. 120×120 uniform mesh. Contours of T . Left: regular fifth order
WENO; Right: anti-diffusive fifth order WENO.

scheme with an extremely refined mesh and can be considered as an exact solution, the

quality of the anti-diffusive WENO scheme is much better than that of the regular WENO

scheme on the relatively coarse mesh with 300 × 100 points.

Figure 4.3: Example 4.2.2. Topography of the river bed. Red is the obstacle.

5 Concluding remarks

The anti-diffusive flux corrections for high order finite difference scheme we explored in [18]

is applied to the Saint-Venant shallow water model with transport of pollutant by a flow

both in one dimension and two dimensions. We achieve high resolution of the location and

concentration of the pollutant.
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Figure 4.4: Example 4.2.2. 300 × 100 uniform mesh. Contours of T . Top: the initial
pollutant; Second: pollutant obtained by the regular fifth order WENO; Third: pollutant
obtained by the anti-diffusive fifth order WENO; Bottom: reference solution obtained by
1500 × 500 uniform mesh with regular fifth order WENO.
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